

0960-894X(95)00347-9

SYNTHESIS AND PORCINE PANCREATIC ELASTASE INHIBITORY EVALUATION OF 6α-(SULFONYL)OXY- AND 6α-CHLOROPENICILLANATE SULFONE ESTERS AND 3α-(ACYLOXY)METHYL-6α-CHLOROPENAM SULFONES

Carlos E. Boschetti, Ernesto G. Mata and Oreste A. Mascaretti*

Instituto de Química Orgánica de Síntesis (CONICET-UNR), Casilla de Correo 991, 2000 Rosario, Argentina

Julia A. Cricco, Gabriela Coux and Oscar A. Roveri*

Departamento de Química Biológica, Cátedra de Biofísica,
Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario

Abstract: The synthesis of 6α -chloropenicillanate sulfone esters 4a-c, 9, the acetate and benzoate of 3α -hydroxymethyl- 6α -chloropenam sulfones 6a-b and pivaloyloxymethyl and benzyl esters of several 6α -(sulfonyl)oxypenicillanate sulfones 12, $15a_1$ - a_3 , $15b_1$ - b_3 are reported. When tested as inhibitors of porcine pancreatic elastase, the acetate of 3α -hydroxymethylpenam 6a proved to be more active in comparison with the esters of 3α -carboxylic acid counterparts 4a-c and 9. Compounds with diverse 6α -(sulfonyl)oxy substituents showed elastase inhibitory activity improved over the corresponding 6α -chloro derivatives 4a-c and 9: among those, compounds $15a_2$ and $15b_2$ were rather unstable, but compounds $15a_1$, $15a_3$, $15b_1$, $15b_3$ combined fair activity with better stability.

Human leukocyte elastase (HLE, EC 3.4.21.37) is a serine protease found in the azurophilic granules of polymorphonuclear leukocytes. This enzyme has been the subject of extensive studies, both in terms of its biological role in numerous diseases 2 and in terms of the development of suitable therapeutic inhibitors to supplement the body's elastase inhibitory capacity and thereby shift the proposed proteinase/antiproteinase imbalance in pathogenic conditions. $^{1.3}$ The presence of a reactive catalytic-site hydroxyl group affords the opportunity for the development of inhibitors which will form a covalent adduct with the enzyme and thereby interfere with the mechanism of catalysis (i.e., mechanism-based inhibitors). This interest has led, over the last fifteen years, to the synthesis of a wide variety of inhibitors based on the β -lactam nucleus.

We recently reported the synthesis of 6α -chloro-2,2-dimethyl-3 α -(pivaloyloxy)methylpenam sulfone and 6α -chloro-2,2-dimethyl-3-exo-methylenepenam sulfone, as well as several benzyl and methyl 6α -substituted penicillanate sulfones.⁴ These new penicillin derivatives were evaluated as elastase inhibitors using, as a model, porcine pancreatic elastase (PPE, EC. 3.4.21.36), an enzyme related to HLE.⁵ We now report the synthesis and activity against PPE of penicillin ester sulfones 1 (R = CO₂Pom, CO₂Bn, CO₂Pr, CO₂Bu, CH₂OCOCH₃ and CH₂OCOPh) substituted at position 6 with a variety of α -oriented functionalities (Y = Cl, FSO₃-, F₃CSO₃-, H₃CSO₃-, and p-H₃C-C₆H₄-SO₃-).

Chemistry⁶

Synthesis of penicillin ester sulfones. The synthesis of the benzyl, *iso*-propyl and *tert*-butyl 6α -chloropenicillanates sulfones **4a-c**, 6α -chloro-2,2-dimethyl- 3α -(acetyl)oxymethyl-(**6a**), and 3α -(benzoyl)oxymethylpenam sulfones (**6b**) is shown in Scheme 1. The starting material was 6α -chloro-

penicillanic acid sulfone (2).⁷ Conversion of 2 into the 6α -chloro-2,2-dimethyl- 3α -chlorocarbonylpenam sulfone (3) in 95% isolated yield was accomplished by oxalyl chloride and dimethylformamide⁸ in benzene at room temperature. Subsequent treatment of 3 with the appropriate alcohol (benzyl, *iso*-propyl and *tert*-butyl) afforded the esters 4a-c. Alternatively, reduction of 2 with borane-methyl sulfide complex⁹ afforded the alcohol 5 which was then treated with acetic anhydride or benzoyl chloride to give the corresponding acetyl (6a) and benzoyl (6b) derivatives, respectively.

The synthesis of (pivaloyloxy)methyl (Pom) 6α -chloropenicillanate sulfone (9), was performed by diazotization-hydrochlorination of ester 8 using the methodology reported by McMillan and Stoodley, 10 and subsequent oxidation (Scheme 2).

Synthesis of 6α -(sulfonyl)oxypenicillanates. We have found that the fluorosulfonyl group can be conveniently and stereospecifically introduced in the 6α orientation by a single-step procedure in a reasonable yield (63%) by treatment of Pom 6-diazopenicillanate (10) with fluorosulfonic acid in methylene chloride; ¹¹ oxidation gave the corresponding sulfone (12) (Scheme 2).

The preparation of benzyl 6α -hydroxypenicillanate (13b) has been described by Sheehan *et al.*¹². The synthesis of Pom 6α -hydroxypenicillanate (13a) from 10, was done following that procedure. These carboxylic esters reacted with mesyl chloride, tosyl chloride or trifluoromethanesulfonic anhydride to give the corresponding Pom and benzyl 6α -methanesulfonyl (14a₁ and 14b₁), 6α -trifluoromethanesulfonyl (14a₂ and 14b₂) and 6α -p-toluenesulfonyl (14a₃ and 14b₃) derivatives in good yield (70 to 90%). Oxidation gave the corresponding sulfones in very good yields (15a₁₋₃, 15b₁₋₃). The preparation of Pom 6α -(trifluoromethanesulfonyl)oxypenicillanate (14a₂) was previously reported by us¹³ using a different methodology.

In vitro PPE inhibition5

The *in vitro* activity of the compounds in Table I were evaluated for their ability to inhibit PPE-catalyzed hydrolysis of the substrate MeO-Suc-Ala-Ala-Pro-Val-pNA. As expected, based on similar results in the cephem¹⁴ and penam¹⁵ series using HLE, the *tert*-butyl, *iso*-propyl (**4b,c**) as well as the methyl (**16**) esters were only weakly active. Use of a Pom double ester (**9**) and benzyl ester (**4a**) provided a greater than five fold increase in potency, as measured by their IC₅₀ values, over the branched and unbranched alkyl esters. The series of pivaloyl (**17**)⁴ and acetyl (**6a**) esters of 3α -hydroxymethyl- 6α -chloropenam sulfones were more potent than the (pivaloyloxy)methyl double esters and benzyl esters.

Based on previous reports by Thompson *et al.* on HLE inhibition by penicillin esters, ¹⁵ we decided to study the introduction of different 6α -(sulfonyl)oxy substituents in an attempt to improve activity. The 6α -CF₃SO₃- derivatives (**15a₂** and **15b₂**) exhibited the lowest IC₅₀ values obtained without preincubation. However, such compounds and the FSO₃- derivative **12** were so unstable that the preincubation assay could not be run (see Table I). Conversely, CH₃SO₃- and (p-CH₃)C₆H₄SO₃- substituents gave compounds **15a₁**, **15a₃**, **15b₁**, and **15b₃** that exhibited rather low instantaneous IC₅₀ values and have better stability, showing a clearly progressive inhibition. The IC₅₀ values with preincubation for these compounds were in such cases from four to fifteen times lower than those without preincubation. Therefore, it is rather likely that compounds **15a₁**, **15a₃**, **15b₁**, and **15b₃** behave as mechanism-based inhibitors. Interestingly, the results described suggest some parallelism beetwen PPE and HLE, i.e. the replacement of 6α -chloro (**4a**) by 6α -TsO (**15b₃**) caused a significative inprovement in both PPE ($205\rightarrow23 \mu M$) and HLE^{15a} ($14\rightarrow0.05 \mu M$) inhibition.

Conclusion

We have extended the scope of structural requirements at C-3 α and C-6 α of the penam sulfones as inhibitors of PPE.⁴ It is noteworthy that the esters of 3α -hydroxymethyl-6 α -chloropenam sulfones (6a and 17) markedly improve the inhibitory activity in comparison with the corresponding esters of 3α -carboxylic acid-6 α -chloropenam sulfones 4a-c and 9. On the other hand, introduction of electron withdrawing 6 α -(sulfonyl)oxy substituents in the penam nucleus allowed us to compare the effects that these (sulfonyl)oxy have on PPE activity in relation to the known compound 15b₃. The SAR study indicated (see Table I) that compounds 15a₂ and 15b₂ are the most potent in this series. However, the less potent compounds 15a₁, 15a₃, 15b₁ and 15b₃ were shown to have better stability. Studies are underway to structurally modify these classes of compounds at C-3 α and C-6 α to improve their potency and address their chemical stability and the results of these investigations will be the subject of future publications.

Acknowledgement. The authors would like to thank CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas) for financial support. One of us (C.E.B.) thanks CONICET for a fellowship.

Table I

Compound	IC ₅₀ (μM) ^a	
	Without Preincubation	With 10 min. Preincubation
4a ^b 4b 4c	205±40 1160±60 1300±230	180±45 1210±220 1200±140
Methyl 6α -chloropenicillanate sulfone (16) ^c	950 (44±3%)d	950 (40±5%) ^d
9 6a	280±90 57±6	220±60 68±5
6 b 6α-Chloro-2,2-dimethyl-3α-(pivaloyloxy)methylpenam sulfone (17) ^c	N.D.e 15±2	20±5
12 15a ₁	16.7±3.1 4.3±0.4	(f) 0.54±0.08
15a ₂ 15a ₃	1.0±0.1 2.1±0.2	(f) 0.49±0.15
$15b_1 \\ 15b_2$	2.2±0.2 0.68±0.09	0.13±0.01 (f)
- 15b3 ^b	23±6	0.15 ± 0.04

^aFor methodology, see Ref. 4; IC₅₀ and standard error values were estimated by non-linear least squares regression fitting the inhibition obtained at different [1] to the equation: **inhibition=maximal inhibition** [1] / (IC₅₀ + [1]). ^bCompounds 4a and 15b₃ were previously reported by Thompson *et al.*^{15a} with IC₅₀ values against HLE of 14 and 0.05 μ M, respectively. ^cThese compound were previously reported. ⁴ dMaximun [1] used in the assays; mean inhibition and its standard error obtained are shown in parenthesis. ^eNot determined due to insolubility of the compound in the reaction medium. ^fIC₅₀ values with preincubation were not determined due to instability of the compounds in the reaction medium.

References

- For recent reviews see: (a) Edwards, P. D.; Bernstein, P. R. Med. Res. Rev. 1994, 14, 127. (b) Bernstein, P. R.; Edwards, P. D.; Williams, J. C. In Progress in Medicinal Chemistry; Ellis, G. P.; Luscombe, D. K., Eds.; Elsevier Science: Amsterdam, 1994; pp 61-120. (c) Zimmerman, M.; Powers, J. C. In Elastin and Elastases; Robert, L.; Hornebeck, W., Eds.; CRC: Boca Raton, 1989; Vol. II, pp 109-123. (d) Hlasta, D. J.; Pagani, E. D. Annu. Rep. Med. Chem. 1994, 29, 195.
- (a) Pulmonary Emphysema, the Rationale for Intervention; Weinbaum, G.; Giles, R. E.; Krell, R. D., Eds.; Ann. N. Y. Acad. Sci. 1991, 624, 1-370; (b) Merrit, T. A.; Cochrane, C. G.; Holconth, K.; Bohl, B.; Hallman, M.; Strayer, D.; Edwards, D.; Gluck, L. J. Clin. Invest. 1983, 72, 656; (c) Jackson, A. H.; Hill, S. L.; Afford, S. C.; Stockley, R. A. Eur. J. Respir. Dis. 1984, 65, 114.
- For a recent review on β-lactamic inhibitors of elastases, transpeptidases and β-lactamases see: Mascaretti,
 O. A.; Boschetti, C. E.; Danelon, G. O.; Mata, E. G.; Roveri, O. A. Current Med. Chem. 1995, 1, 441.
- 4. Boschetti, C. E.; Mascaretti, O. A.; Cricco, J. A.; Roveri, O. A. Bioorg. Med. Chem. 1995, 3, 95.
- 5. For a recent review on the X-ray crystal structures, mechanism, substrate specifity, of both HLE and PPE see: Bode, W.; Meyer, E., Jr.; Powers, J. C. *Biochemistry* **1989**, 28, 1951.
- 6. All compounds gave satisfactory spectral data (IR, ¹H NMR, ¹³C NMR).
- 7. Cartwright, S. J.; Coulson, A. F. Nature 1979, 278, 360.
- 8. Mata, E. G.; Boschetti, C. E.; Mascaretti, O. A. Org. Prep. Proced. Int. 1995, 27, 229.
- Mata, E. G.; Setti, E. L.; Mascaretti, O. A.; Boggio, S. B.; Roveri, O. A. J. Chem. Soc., Perkin Trans 1 1988, 1551.
- 10. McMillan, I.; Stoodley, R. J. J. Chem. Soc. (C) 1968, 2535.
- 11. Setti, E. L.; Mascaretti, O. A. J. Org. Chem. 1986, 51, 3217
- 12. Sheehan, J. C.; Lo, Y. S.; Loliger, J.; Podewell, C. C. J. Org. Chem. 1974, 39, 1444.
- 13. Mascaretti, O. A.; Roveri, O. A.; Danelon, G. O. In *Recent Progress in the Chemical Synthesis of Antibiotics and Related Microbial Products*; Lukacs, G., Ed.; Springer-Verlag: Berlin, 1993; Vol. 2, pp 679-749.
- Finke, P. E.; Ashe, B. M.; Knight, W. B.; Maycock, A. L.; Navia, M. A.; Shah, S. K.; Thompson, K. R.; Underwood, D. J.; Weston, H.; Zimmerman, M.; Doherty, J. B. J. Med. Chem. 1990, 33, 2522.
- (a) Thompson, K. R.; Finke, P. E.; Shah, S. K.; Ashe, B. M.; Dahlgren, M. E.; Maycock, A. L.; Doherty, J. B. Bioorg. Med. Chem. Lett. 1993, 3, 2283. (b) Thompson, K. R.; Finke, P. E.; Shah, S. K.; Ashe, B. M.; Dahlgren, M. E.; Dellea, P. S.; Fletcher, D. S.; Hand, K. M.; Maycock, A. L.; Doherty, J. B. Bioorg. Med. Chem. Lett. 1993, 3, 2289.